Double-critical graph conjecture

Jad Issa, Charbel Abi Daher¹

American University of Beirut, CMPS 396AC

¹Lebanese University

Background

Figure: Paul Erdős (left) and Laszlo Lovász (right)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

1967 "Theory of Graphs", Erdős.

Double-critical graph

A *k*-chromatic double-critical graph is a connected graph with chromatic number k and such that deleting any pair of adjacent vertices reduces the chromatic number to precisely k - 2.

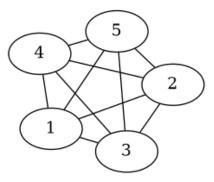


Figure: K_k is a k-chromatic double-critical graph

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Double-critical graph

Other examples?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conjecture

Conjecture (Erdős 1967)

 K_k is the only k-chromatic double critical graph.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Conjecture

Basic intuition: G is k-chromatic double-critical:

- G is connected tightly enough to be k-chromatic
- Every edge is involved in some essential subgraph of G which makes it k-chromatic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

These subgraphs don't make independent connected components (G is connected).

Erdős-Lovász Tihany

Conjecture

For $s, t \ge 2$, and G a graph such that $\omega(G) < \chi(G) = s + t - 1$, then there exist disjoint subgraphs G_1, G_2 , such that $\chi(G_1) \ge s, \chi(G_2) \ge t$.

Corollary (and special case)

 K_k is the only k-chromatic double critical graph.

Proof.

Let *G* be k + 1-chromatic double-critical. For any $G_1 \leq G$, either $\chi(G_1) < 2$, or $\chi(G_1) \geq 2$, in which case, G_1 must have at least an edge *H* as a subgraph. But then, $G_1 \cap G_2 = \emptyset$, which means $G_2 \leq G - G_1 \leq G - H$ so $\chi(G_2) \leq \chi(G - H) = k + 1 - 2 < k$. By the contrapositive of the Erdős-Lovász Tihani conjecture for s = 2, $\omega(G) = \chi(G) = k + 1$. But then, if we delete any edge from *G*, we reduce the chromatic number, so all edges of *G* are in the K_{k+1} subgraph of *G*, with *G* connected, $G = K_{k+1}$.

Any first impressions?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theory

Theory

► Limiting *k* (basically all of the literature).

(ロ)、(型)、(E)、(E)、 E) の(()

Theory

▶ Limiting *k* (basically all of the literature).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Looking at special classes of graphs:

Theory

▶ Limiting *k* (basically all of the literature).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Looking at special classes of graphs:

Line graphs

Theory

▶ Limiting *k* (basically all of the literature).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Looking at special classes of graphs:

Line graphs

Claw-free

Theory

▶ Limiting *k* (basically all of the literature).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Looking at special classes of graphs:
 - Line graphs
 - Claw-free
 - *l*-star-free

Theory

• Limiting k (basically all of the literature).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Looking at special classes of graphs:
 - Line graphs
 - Claw-free
 - *l*-star-free
- Weakening the conjecture:

Theory

- Limiting k (basically all of the literature).
- Looking at special classes of graphs:
 - Line graphs
 - Claw-free
 - *l*-star-free
- Weakening the conjecture:
 - Every k-chromatic double-critical graph has a K_k minor.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theory

- Limiting k (basically all of the literature).
- Looking at special classes of graphs:
 - Line graphs
 - Claw-free
 - *l*-star-free
- Weakening the conjecture:
 - Every k-chromatic double-critical graph has a K_k minor.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

General observations on double-critical graphs.

Theory Forbidden (induced) subgraphs

Disallowing subgraphs from closed neighbourhoods allows us to add edges in the neighbourhoods.

- P_2 -free + connected \implies proven and trivial.
- ▶ Claw-free (3-star-free) \implies proven until $k \le 8$.
- ▶ *l*-star free?
- ▶ General graphs ⇒ proven until k ≤ 5 (but k ∈ {2,3} are trivial and 4 is easy).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Huang, Yu) If K_{k-1} subgraph of G, then $G \cong K_k$.

Theorem (Huang, Yu²)

If $xy \in E(G)$, then x, y share at least one common neighbour in each color-set.

Corollary

 K_3, K_4 are the only double-critical graphs of chromatic numbers 3 and 4 respectively.

²Proof given does not require claw-free

Theory Claw-free

Theorem

If G is also claw-free, double-critical, and 5-chromatic, then $G \cong K_5$.

Proof.

Pick adjacent vertices $x, y \in G$, and color G - x, y with 3 colors; common neighbours of x and y are at least 3, one of each color. But x, u_1, u_2, u_3 can't form a claw, so w.l.o.g. $u_1u_2 \in E(G)$, then: $\{x, u_1, u_2, y\}$ is a K_4 in G, so $G \cong K_5$.

Take-away intuition

Find cliques in common neighbourhoods. Eliminating ℓ -stars allows us to add at least one edge in a neighbourhood of size ℓ .

Computational approaches

Computational approaches

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Computational approaches

• Graph coloring on general graphs is NP-complete.

Computational approaches

- Graph coloring on general graphs is NP-complete.
- The search space for a fixed chromatic number is infinite.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Computational approaches

- Graph coloring on general graphs is NP-complete.
- The search space for a fixed chromatic number is infinite.
- 'Usual' graph properties that ease coloring do not apply (e.g. treewidth).

Computational approaches

- Graph coloring on general graphs is NP-complete.
- The search space for a fixed chromatic number is infinite.
- 'Usual' graph properties that ease coloring do not apply (e.g. treewidth).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Prospects

Computational approaches

- Graph coloring on general graphs is NP-complete.
- The search space for a fixed chromatic number is infinite.
- 'Usual' graph properties that ease coloring do not apply (e.g. treewidth).

- Prospects
 - Minimum degree

Computational approaches

- Graph coloring on general graphs is NP-complete.
- The search space for a fixed chromatic number is infinite.
- 'Usual' graph properties that ease coloring do not apply (e.g. treewidth).

- Prospects
 - Minimum degree
 - Containment of special subgraphs

Computational approaches

- Graph coloring on general graphs is NP-complete.
- The search space for a fixed chromatic number is infinite.
- 'Usual' graph properties that ease coloring do not apply (e.g. treewidth).

- Prospects
 - Minimum degree
 - Containment of special subgraphs
 - DP-like ideas

Naive approach

Theorem (Pedersen 2012)

There is no non-complete double-critical graph on less than 13 vertices.

Back of the envelope calculation: 13 vertices $\implies {\binom{13}{2}} = 78$ possible edges $\implies 2^{78}$ labeled graphs \implies running time is unreasonably big.

Minimum degree

Theorem (Kawarabayashi, Pedersen, Toft 2010) If G is double-critical, non-complete, and k-chromatic, then $\delta(G) \ge k + 1$.

Example use: for *k*-chromatic, double-critical graphs with n = k + 3 vertices, the search space is reduced to one non-edge per pair of vertices. The search space grows as k, n get bigger and/or farther apart.

Graphs with claws

An induced claw in a graph determines $\binom{4}{2} = 6$ edges. You can start with a claw and add non-edges (previous theorem) until you get a convenient minimum degree. Reduces search space by up to a factor of 2^6 .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Reduce search space early

Lemma

If G is non-complete, k-chromatic, double critical, then $G - \{x, y\}$ for any adjacent x, y has minimum degree k - 1 and is k - 2-chromatic.

Idea: generate $G - \{x, y\}$ which satisfies the conditions, then add x, y to generate G which is k-chromatic, then test whether G is double-critical.

Thank you!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで