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Introduction
Background

Figure: Paul Erdős (left) and Laszlo Lovász (right)

1967 “Theory of Graphs”, Erdős.



Introduction
Double-critical graph

A k-chromatic double-critical graph is a connected graph with
chromatic number k and such that deleting any pair of adjacent
vertices reduces the chromatic number to precisely k − 2.

Figure: Kk is a k-chromatic double-critical graph
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Double-critical graph

Other examples?



Introduction
Conjecture

Conjecture (Erdős 1967)
Kk is the only k-chromatic double critical graph.



Introduction
Conjecture

Basic intuition: G is k-chromatic double-critical:
I G is connected tightly enough to be k-chromatic
I Every edge is involved in some essential subgraph of G which

makes it k-chromatic.
I These subgraphs don’t make independent connected

components (G is connected).



Introduction
Erdős-Lovász Tihany

Conjecture
For s, t ≥ 2, and G a graph such that ω(G) < χ(G) = s + t − 1,
then there exist disjoint subgraphs G1,G2, such that
χ(G1) ≥ s, χ(G2) ≥ t.

Corollary (and special case)
Kk is the only k-chromatic double critical graph.



Proof.
Let G be k + 1-chromatic double-critical. For any G1 ≤ G , either
χ(G1) < 2, or χ(G1) ≥ 2, in which case, G1 must have at least an
edge H as a subgraph. But then, G1 ∩ G2 = ∅, which means
G2 ≤ G − G1 ≤ G −H so χ(G2) ≤ χ(G −H) = k + 1− 2 < k. By
the contrapositive of the Erdős-Lovász Tihani conjecture for s = 2,
ω(G) = χ(G) = k + 1. But then, if we delete any edge from G , we
reduce the chromatic number, so all edges of G are in the Kk+1
subgraph of G , with G connected, G = Kk+1.



Research directions

Any first impressions?



Research directions
Theory

I Limiting k (basically all of the literature).
I Looking at special classes of graphs:

I Line graphs
I Claw-free
I `-star-free

I Weakening the conjecture:
I Every k-chromatic double-critical graph has a Kk minor.

I General observations on double-critical graphs.
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Theory
Forbidden (induced) subgraphs

Disallowing subgraphs from closed neighbourhoods allows us to
add edges in the neighbourhoods.
I P2-free + connected =⇒ proven and trivial.
I Claw-free (3-star-free) =⇒ proven until k ≤ 8.
I `-star free?
I General graphs =⇒ proven until k ≤ 5 (but k ∈ {2, 3} are

trivial and 4 is easy).



Theory
General observations

Theorem (Huang, Yu)
If Kk−1 subgraph of G, then G ∼= Kk .

Theorem (Huang, Yu2)
If xy ∈ E (G), then x , y share at least one common neighbour in
each color-set.

Corollary
K3,K4 are the only double-critical graphs of chromatic numbers 3
and 4 respectively.

2Proof given does not require claw-free



Theory
Claw-free

Theorem
If G is also claw-free, double-critical, and 5-chromatic, then
G ∼= K5.

Proof.
Pick adjacent vertices x , y ∈ G , and color G − x , y with 3 colors;
common neighbours of x and y are at least 3, one of each color.
But x , u1, u2, u3 can’t form a claw, so w.l.o.g. u1u2 ∈ E (G), then:
{x , u1, u2, y} is a K4 in G , so G ∼= K5.

Take-away intuition
Find cliques in common neighbourhoods. Eliminating `-stars
allows us to add at least one edge in a neighbourhood of size `.



Research directions
Computational approaches

I Issues
I Graph coloring on general graphs is NP-complete.
I The search space for a fixed chromatic number is infinite.
I ‘Usual’ graph properties that ease coloring do not apply (e.g.

treewidth).
I Prospects

I Minimum degree
I Containment of special subgraphs
I DP-like ideas
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Computational approaches
Naive approach

Theorem (Pedersen 2012)
There is no non-complete double-critical graph on less than 13
vertices.

Back of the envelope calculation: 13 vertices =⇒
(13

2
)

= 78
possible edges =⇒ 278 labeled graphs =⇒ running time is
unreasonably big.



Computational approaches
Minimum degree

Theorem (Kawarabayashi, Pedersen, Toft 2010)
If G is double-critical, non-complete, and k-chromatic, then
δ(G) ≥ k + 1.
Example use: for k-chromatic, double-critical graphs with
n = k + 3 vertices, the search space is reduced to one non-edge
per pair of vertices. The search space grows as k, n get bigger
and/or farther apart.



Computational approaches
Graphs with claws

An induced claw in a graph determines
(4

2
)

= 6 edges. You can
start with a claw and add non-edges (previous theorem) until you
get a convenient minimum degree. Reduces search space by up to
a factor of 26.



Computational approaches
Reduce search space early

Lemma
If G is non-complete, k-chromatic, double critical, then G − {x , y}
for any adjacent x , y has minimum degree k − 1 and is
k − 2-chromatic.
Idea: generate G − {x , y} which satisfies the conditions, then add
x , y to generate G which is k-chromatic, then test whether G is
double-critical.



Thank you!


