Type theory as new constructive foundations for
mathematics, logic, and computer science

Jad lIssa

American University of Beirut

February 11, 2021

Sources

Motivation

Type Theory

Curry-Howard correspondence

Quantitative logic

Homotopy Type Theory

Sources

The following presentation heavily relies (non-exhaustively) on
these resources:

» Proofs and Types, Jean-Yves Girard

» Homotopy Type Theory, The Univalent Foundations Program,
Institute of Advanced Study

» Oregon Programming Languages Summer School 2012

Motivation

Low-level mathematics

vVvVvvyVvVvYvVvyyy

a = b is supposed to mean a is the exact same thing as b.
What about 4 x 5 = 20, 2 —y? = (z —y)(z +y) or 2y = yx?
xy # yr; however, Ty = yx.

Similarily, Ax B# B x A, but Ax B B x A.

Distinction between proofs.

Too obstructive for modern mathematics.

Automatic proof verification.

Type Theory

Type Theory

Judgements vs propositions and types vs sets

Type theory | Set theory

Type Set
Term Element
a:A a€c€ A
a=b a=1b

Judgement | Proposition

The proposition that 0 € N can be argued to be true or false,
however, the judgement that 0 : N is definitionally true about 0
and asserted true.

Formally, 0 : N is a different ‘entity’ than 0 : R, one could write O
and OR.

Type Theory

All about functionality

Type theory is all about how elements of a type behave.

_ 'Fn:N
DR IF s N s

r=Cc:u I'ke:C I'n:Nyep:Chkepgr: C
I'n:NFe¢,:C

NE

Type Theory

All about functionality

Type theory is all about how elements of a type behave.

NIy 0:N NZg S:N—=N

NE reey: [[C>(N—-C—C)— (N=C)
(c:u)

Type Theory

Category theory

I'Fa: A I'Hb: B
't (a,b): Ax B

xT

I'Fv:Ax B I'Fv:Ax B
1 x& 2
'Frnlv: A I'#n“v:B

XEQ

Type Theory

Constructions

Product

I'Fa: A I'b: B

't (a,b): Ax B L
I'Fv:Ax B I'Fv:Ax B
Xgl
F'rlv: A '+n2v:B

xZ (,):A—-B— AxB
xE 7w AxB— A
X E9 7 :AxB— B

><52

Type Theory

Constructions

Product
T'HFA: U I'EB: U
I'FAxB:U UL
'-rA:UU4 T HFB:U I'Fa:A I'-b:B
't (a,b): Ax B

'HFA:U I'EB:U I'Fv:Ax B
F'rnlv: A

THFA: U '=EB: U I'rv:Ax B
I't+n%v:B

xT

Xgl

X(‘:Q

xI (): [A-B—AxB
A,B:U

x&E w o H AxB— A
A,B:U

xE& w* : || AxB—B
A,B:U

Type Theory

Constructions

Product

I'Fa: A I'b: B

't (a,b): Ax B L
I'Fv:Ax B I'Fv:Ax B
Xgl
F'rlv: A '+n2v:B

xZ (,):A—-B— AxB
xE 7w AxB— A
X E9 7 :AxB— B

><52

Type Theory

Constructions

Coproduct

I'kFa:A I'b: B
TFima ArB % Trmb. ArB &

la:Akc:C Ib:BkFc:C <
T.o:A+BFc:C +

+7Z; inl :A—- A+ B
+7Z, inr :B— A+ B

+& case: (A—-C)—» (B—-C)—= (A+B—C)

Type Theory

Constructions

Exponents

I'N'a:AFb: B
' (Xab): A— B

— Z (A-abstraction)

I'kFa:A 'f:A—B
' fa:B

— & (evaluation)

Type Theory

Universes

A universe U is a type of (small) types. We thus internalize types.
“Ais a type" becomes a judgment A : U.

To avoid Russel’s paradox, we can make a tower of universes as
such.
Uy UL Uy 2 -+

Type Theory

Type families/dependent types

A type family (or dependent type) B over a type A is a
type-valued function parametrized over the elements of A.

B:A—-U
a— B(a):U

Type Theory
Constructions
Dependent functions / universals

Ia: AF B(a): U Iya:AFb: B(a)
T F (Ma.b) : [I.4 B(a)

1z

'a:A 'Ff:1l,4B(a)
't fa: B(a)

e

Type Theory

Constructions

Dependent pairs / existentials

'Fa:A I'-b: B(a)
= (av b) : ZZ‘ZAB(:E)

Fl_rU:Zx:AB([B> Zg Fl_v:Zz:AB(x)
F-alv: A ! I't 720 : B(r!(x))

AR (CEES)

T:A

& ot :(;B(a;)> — A

7

2.6

Curry-Howard correspondence

Curry-Howard Correspondence

Basics

Logic Type theory
Proposition Typel!
n-ary predicate | n-ary dependent type
Proof Element
ANB Ax B
AV B A+B
A= B A — Bor BA
-A A— 1
Vo € A, C(x) [1,.4C(z)
Ju € A, C(.%’) ECEZA C(l’)
Contradiction L
Tautology T

!Booleans are the type 2 and so called ‘mere propositions’ are special types,
but in general, the correspondence is with general types

Curry-Howard Correspondence

Intuitionistic logic

There is no proof of the law of the excluded middle (P V —P) for
general types, however, it is not refuted (thus, consistent with
(intuitionistic) type theory), =—(P V —P) is provable.

Proof.

We want an element of type ((P+ (P — 1)) = L) — L. This is
a function whose argument is a function f : P+ (P — 1) — L.
We want to construct an element of L from f. Note:
foinl:P— 1. foinr: (P — 1) — L. So, (foinr)(foinl): L,
thus the whole proof is the function

(Af.(foinr)(foinl)):==(PV=P)

Curry-Howard Correspondence

Algebraic structures

Group axioms

Grp := Z Z Z H
AU f:ASASA eA z,y,2:A
(fle,x) =
(f(z,e) =
(f(z, fy, 2

(f(a',z) =)

Every group here consists of the classical tuple (A, f,e) along with
proofs of the axioms.

Quantitative logic

Quantitative logic

Linear logic

A proof can only be used once in constructing any other proof and
cannot be ‘destroyed’.

We remove weakening and contraction.

Ty -y
WRTFES 4 T AFy WL

I'-Y,4,A LA AFY
TFy, A T, A%

CR

CL

Quantitative logic

Quantitative type theory in programming

» Qubits cannot be duplicated (no-cloning) = linear types.
» Converging toward providing proofs alongside programs.

map : !'n (a -> b) -> !'1 (Vector a n) -> (Vector b n)
map (£, []) = [
map(f, [x0, ...xi...]) [£f(x0), ...map(f, xi)...]

Idris 2

Homotopy Type Theory

Homotopy Type Theory

Identity types

Internalize equality and generalize it. First introduced by Per
Martin-Lo6f. Inductive type generated by reflexivity.

'kFzx:Ay:A
Ikrefl,:x =2

=17

Dox,y: Ap:x=ytClz,y,p): U ix: Ak c: Cx,x,refl,)
Fay:Ap:a=ykc:Clz,y,p)

=4 &

Homotopy Type Theory

Identity types

Internalize equality and generalize it. First introduced by Per
Martin-Lo6f. Inductive type generated by reflexivity.

'kFzx:Ay:A
Thkrefl,:x =2

=17

Dzy:Ap:x=yk-C(z,y,p): U ix: Ak c: Cx,x,refl,)
Dz,y: Ap:x=ytc:Clx,y,p)

=4 &

Homotopy Type Theory

Identity types - symmetry/inverses

Symmetry here is a function of proofs of equality.

() lir=y—y=a

sym:H H rT=yY—=yYy==2a

AU xy:A

By induction, assume z = y and p = refl,.
(refl,) ™ := sym(A, z, z, refl,) = refl,

In analogy with induction on natural numbers, we have
completely defined (-)~1.

Homotopy Type Theory

Identity types - transitivity/concatenation

Transitivity is also a (binary) function.

=Y SY=2 T =2

Double induction:
refl, - refl, := refl,

Single induction:
p-refl, :=p
refl, - g :=g¢q

Homotopy Type Theory

Identity types - Non-trivial paths

Is this the case?

H H H p = refl,

AU z,y: AP x=Y

Homotopy Type Theory

Identity types - Non-trivial paths

Is this the case?

H H H p = refl,

AU zy: Ap:r=y

Not well-typed!

Homotopy Type Theory

Identity types - Non-trivial paths

Is this the case?

H H H p = refl,

AU z,y: AP x=Y

Not well-typed!
Is this the case?

HH H p = refl,

AU x:Apx=x

Homotopy Type Theory

Identity types - Non-trivial paths

Is this the case?

H H H p = refl,

AU z,y: AP x=Y

Not well-typed!
Is this the case?

HH H p = refl,

AU x:Ap:r=T
Not a binary relation!

Homotopy Type Theory

Paths and homotopies, co-groupoids

P:x=4Yy
q:-T =AY

QIP=zg=y(q

Homotopy Type Theory

Higher inductive types

base loop

base : S!

loop : base =g1 base

Homotopy Type Theory

Univalence axiom

(Formal) equivalence (i.e. isomorphism) is equivalent to identity

ua: H (A=ZB)= (A=y B)
A,B:U

Thank you!

Licensed under the CC BY-SA 4.0 license

creativecommons.org/licenses/by-sa/4.0

	Sources
	Motivation
	Type Theory
	Curry-Howard correspondence
	Quantitative logic
	Homotopy Type Theory

