Type theory as new constructive foundations for mathematics, logic, and computer science

Jad Issa

American University of Beirut

February 11, 2021

Sources

Motivation

Type Theory

Curry-Howard correspondence

Quantitative logic

Homotopy Type Theory

Sources

The following presentation heavily relies (non-exhaustively) on these resources:

- Proofs and Types, Jean-Yves Girard
- ► Homotopy Type Theory, The Univalent Foundations Program, Institute of Advanced Study
- Oregon Programming Languages Summer School 2012

Motivation

Low-level mathematics

- ightharpoonup a=b is supposed to mean a is **the exact same thing as** b.
- ▶ What about $4 \times 5 = 20$, $x^2 y^2 = (x y)(x + y)$ or xy = yx?
- $ightharpoonup xy \not\equiv yx$; however, xy = yx.
- ▶ Similarly, $A \times B \neq B \times A$, but $A \times B \cong B \times A$.
- Distinction between proofs.
- ▶ Too obstructive for modern mathematics.
- Automatic proof verification.

Judgements vs propositions and types vs sets

Type theory	Set theory
Type	Set
Term	Element
a:A	$a \in A$
$a \equiv b$	a = b
Judgement	Proposition

The proposition that $0 \in \mathbb{N}$ can be argued to be true or false, however, the judgement that $0 : \mathbb{N}$ is definitionally true about 0 and asserted true.

Formally, $0:\mathbb{N}$ is a different 'entity' than $0:\mathbb{R}$, one could write $0_\mathbb{N}$ and $0_\mathbb{R}$.

All about functionality

Type theory is all about how elements of a type behave.

$$\frac{\Gamma \vdash n : \mathbb{N}}{\Gamma \vdash Sn : \mathbb{N}} \, \mathbb{N} \mathcal{I}_{S}$$

$$\frac{\Gamma \vdash C : \mathcal{U} \qquad \Gamma \vdash c_{0} : C \qquad \Gamma, n : \mathbb{N}, c_{n} : C \vdash c_{n+1} : C}{\Gamma, n : \mathbb{N} \vdash c_{n} : C} \, \mathbb{N} \mathcal{E}$$

All about functionality

Type theory is all about how elements of a type behave.

$$\mathbb{N}\mathcal{I}_0 \quad 0: \mathbb{N} \qquad \mathbb{N}\mathcal{I}_S \quad S: \mathbb{N} \to \mathbb{N}$$

$$\mathbb{N}\mathcal{E} \quad \mathsf{rec}_{\mathbb{N}}: \prod_{(C:\mathcal{U})} C \to (\mathbb{N} \to C \to C) \to (\mathbb{N} \to C)$$

Category theory

$$\frac{\Gamma \vdash a : A \qquad \Gamma \vdash b : B}{\Gamma \vdash (a,b) : A \times B} \times \mathcal{I}$$

$$\frac{\Gamma \vdash v : A \times B}{\Gamma \vdash \pi^1 v : A} \times \mathcal{E}_1 \qquad \frac{\Gamma \vdash v : A \times B}{\Gamma \vdash \pi^2 v : B} \times \mathcal{E}_2$$

Constructions

Product

$$\frac{\Gamma \vdash a : A \qquad \Gamma \vdash b : B}{\Gamma \vdash (a,b) : A \times B} \times \mathcal{I}$$

$$\frac{\Gamma \vdash v : A \times B}{\Gamma \vdash \pi^{1}v : A} \times \mathcal{E}_{1} \qquad \frac{\Gamma \vdash v : A \times B}{\Gamma \vdash \pi^{2}v : B} \times \mathcal{E}_{2}$$

$$\times \mathcal{I} \quad (\cdot, \cdot) : A \to B \to A \times B$$

$$\times \mathcal{E}_{1} \quad \pi^{1} \quad : A \times B \to A$$

$$\times \mathcal{E}_{2} \quad \pi^{2} \quad : A \times B \to B$$

Constructions

Product

$$\frac{\Gamma \vdash A : \mathcal{U} \qquad \Gamma \vdash B : \mathcal{U}}{\Gamma \vdash A \times B : \mathcal{U}} \mathcal{U} \mathcal{I}_{\times}$$

$$\frac{\Gamma \vdash A : \mathcal{U} \qquad \Gamma \vdash B : \mathcal{U} \qquad \Gamma \vdash a : A \qquad \Gamma \vdash b : B}{\Gamma \vdash (a,b) : A \times B} \times \mathcal{I}$$

$$\frac{\Gamma \vdash A : \mathcal{U} \qquad \Gamma \vdash B : \mathcal{U} \qquad \Gamma \vdash v : A \times B}{\Gamma \vdash \pi^{1}v : A} \times \mathcal{E}_{1}$$

$$\frac{\Gamma \vdash A : \mathcal{U} \qquad \Gamma \vdash B : \mathcal{U} \qquad \Gamma \vdash v : A \times B}{\Gamma \vdash \pi^{2}v : B} \times \mathcal{E}_{2}$$

$$\times \mathcal{I} \qquad (\cdot, \cdot) : \prod_{A,B:\mathcal{U}} A \to B \to A \times B$$

$$\times \mathcal{E}_{1} \qquad \pi^{1} \qquad : \prod_{A,B:\mathcal{U}} A \times B \to A$$

$$\times \mathcal{E}_{2} \qquad \pi^{2} \qquad : \prod_{A,B:\mathcal{U}} A \times B \to B$$

Constructions

Product

$$\frac{\Gamma \vdash a : A \qquad \Gamma \vdash b : B}{\Gamma \vdash (a,b) : A \times B} \times \mathcal{I}$$

$$\frac{\Gamma \vdash v : A \times B}{\Gamma \vdash \pi^{1}v : A} \times \mathcal{E}_{1} \qquad \frac{\Gamma \vdash v : A \times B}{\Gamma \vdash \pi^{2}v : B} \times \mathcal{E}_{2}$$

$$\times \mathcal{I} \quad (\cdot, \cdot) : A \to B \to A \times B$$

$$\times \mathcal{E}_{1} \quad \pi^{1} \quad : A \times B \to A$$

$$\times \mathcal{E}_{2} \quad \pi^{2} \quad : A \times B \to B$$

Coproduct

$$\begin{split} \frac{\Gamma \vdash a : A}{\Gamma \vdash \text{inl } a : A + B} + & \mathcal{I}_{l} & \frac{\Gamma \vdash b : B}{\Gamma \vdash \text{inr } b : A + B} + & \mathcal{I}_{r} \\ \frac{\Gamma, a : A \vdash c : C}{\Gamma, v : A + B \vdash c : C} + & \mathcal{E} \end{split}$$

$$\begin{split} +\mathcal{I}_l & \text{ inl } : A \to A+B \\ +\mathcal{I}_r & \text{ inr } : B \to A+B \\ +\mathcal{E} & \text{ case } : (A \to C) \to (B \to C) \to (A+B \to C) \end{split}$$

Exponents

$$\frac{\Gamma, a: A \vdash b: B}{\Gamma \vdash (\lambda a.b): A \to B} \to \mathcal{I} \text{ (λ-abstraction)}$$

$$\frac{\Gamma \vdash a: A \qquad \Gamma \vdash f: A \to B}{\Gamma \vdash fa: B} \to \mathcal{E} \text{ (evaluation)}$$

Type Theory Universes

A universe ${\cal U}$ is a type of (small) types. We thus internalize types.

"A is a type" becomes a judgment $A:\mathcal{U}$.

To avoid Russel's paradox, we can make a tower of universes as such.

$$\mathcal{U}_0:\mathcal{U}_1:\mathcal{U}_2:\cdots$$

Type families/dependent types

A type family (or dependent type) B over a type A is a type-valued function parametrized over the elements of A.

$$B: A \to \mathcal{U}$$

 $a \mapsto B(a): \mathcal{U}$

Dependent functions / universals

$$\frac{\Gamma, a : A \vdash B(a) : \mathcal{U} \qquad \Gamma, a : A \vdash b : B(a)}{\Gamma \vdash (\lambda a.b) : \prod_{a:A} B(a)} \prod \mathcal{I}$$

$$\frac{\Gamma \vdash a : A \qquad \Gamma \vdash f : \prod_{a:A} B(a)}{\Gamma \vdash fa : B(a)} \prod \mathcal{E}$$

Dependent pairs / existentials

$$\frac{\Gamma \vdash a : A \qquad \Gamma \vdash b : B(a)}{\Gamma \vdash (a,b) : \sum_{x:A} B(x)} \sum \mathcal{I}$$

$$\frac{\Gamma \vdash v : \sum_{x:A} B(x)}{\Gamma \vdash \pi^{1}v : A} \sum \mathcal{E}_{1} \qquad \frac{\Gamma \vdash v : \sum_{x:A} B(x)}{\Gamma \vdash \pi^{2}v : B(\pi^{1}(x))} \sum \mathcal{E}_{2}$$

$$\sum \mathcal{I} \quad (\cdot, \cdot) : \prod_{x:A} \left(B(x) \to \sum_{x:A} B(x) \right)$$

$$\sum \mathcal{E}_{1} \quad \pi^{1} \quad : \left(\sum_{x:A} B(x) \right) \to A$$

$$\sum \mathcal{E}_{2} \quad \pi^{2} \quad : \prod_{v:\sum_{x:A} B(x)} B(\pi^{1}(v))$$

Curry-Howard correspondence

Curry-Howard Correspondence

Basics

Logic	Type theory
Proposition	Type ¹
n-ary predicate	n-ary dependent type
Proof	Element
$A \wedge B$	$A \times B$
$A \vee B$	A+B
$A \implies B$	$A o B$ or B^A
$\neg A$	$A \rightarrow \bot$
$\forall x \in A, C(x)$	$\prod_{x:A} C(x)$
$\exists x \in A, C(x)$	$\sum_{x:A} C(x)$
Contradiction	
Tautology	T

Curry-Howard Correspondence

Intuitionistic logic

There is no proof of the law of the excluded middle $(P \lor \neg P)$ for general types, however, it is not refuted (thus, consistent with (intuitionistic) type theory), $\neg \neg (P \lor \neg P)$ is provable.

Proof.

We want an element of type $((P+(P\to \bot))\to \bot)\to \bot$. This is a function whose argument is a function $f:P+(P\to \bot)\to \bot$. We want to construct an element of \bot from f. Note: $f\circ \operatorname{inl}:P\to \bot$. $f\circ \operatorname{inr}:(P\to \bot)\to \bot$. So, $(f\circ \operatorname{inr})(f\circ \operatorname{inl}):\bot$, thus the whole proof is the function

$$(\lambda f.(f \circ \mathsf{inr})(f \circ \mathsf{inl})) : \neg \neg (P \vee \neg P)$$

Group axioms

$$\begin{split} \mathsf{Grp} : &\equiv \sum_{A:\mathcal{U}} \sum_{f:A \to A \to A} \sum_{e:A} \prod_{x,y,z:A} \\ & (f(e,x) = x) \times \\ & (f(x,e) = x) \times \\ & (f(x,f(y,z)) = f(f(x,y),z)) \times \\ & \sum_{x':A} (f(x,x') = e) \times \\ & (f(x',x) = e) \end{split}$$

Every group here consists of the classical tuple (A,f,e) along with proofs of the axioms.

Quantitative logic

Quantitative logic

Linear logic

A proof can only be used **once** in constructing any other proof and cannot be 'destroyed'.

We remove weakening and contraction.

$$\begin{aligned} & \mathsf{WR} \, \frac{\Gamma \vdash \Sigma}{\Gamma \vdash \Sigma, A} & \quad \frac{\Gamma \vdash \Sigma}{\Gamma, A \vdash \Sigma} \, \mathsf{WL} \\ & \mathsf{CR} \, \frac{\Gamma \vdash \Sigma, A, A}{\Gamma \vdash \Sigma, A} & \quad \frac{\Gamma, A, A \vdash \Sigma}{\Gamma, A \vdash \Sigma} \, \mathsf{CL} \end{aligned}$$

Quantitative logic

Quantitative type theory in programming

- ightharpoonup Qubits cannot be duplicated (no-cloning) \implies linear types.
- Converging toward providing proofs alongside programs.

```
map : !n (a -> b) -> !1 (Vector a n) -> (Vector b n) map(f, []) = [] map(f, [x0, ...xi...]) = [f(x0), ...map(f, xi)...]
```

Idris 2

Identity types

Internalize equality and generalize it. First introduced by Per Martin-Löf. Inductive type generated by reflexivity.

$$\frac{\Gamma \vdash x : A, y : A}{\Gamma \vdash \mathsf{refl}_x : x = x} =_A \mathcal{I}$$

$$\frac{\Gamma, x, y: A, p: x = y \vdash C(x, y, p): \mathcal{U} \qquad \Gamma, x: A \vdash c: C(x, x, \mathsf{refl}_x)}{\Gamma, x, y: A, p: x = y \vdash c: C(x, y, p)} =_A \mathcal{E}$$

Identity types

Internalize equality and generalize it. First introduced by Per Martin-Löf. Inductive type generated by reflexivity.

$$\frac{\Gamma \vdash x : A, y : A}{\Gamma \vdash \mathsf{refl}_x : x = x} =_A \mathcal{I}$$

$$\frac{\Gamma, x, y: A, p: x = y \vdash C(x, y, p): \mathcal{U} \qquad \Gamma, x: A \vdash c: C(x, x, \mathsf{refl}_x)}{\Gamma, x, y: A, p: x = y \vdash c: C(x, y, p)} =_A \mathcal{E}$$

Symmetry here is a **function** of proofs of equality.

$$(\cdot)^{-1}: x = y \to y = x$$

$$\operatorname{sym}: \prod_{A:\mathcal{U}} \prod_{x,y:A} x = y \to y = x$$

By induction, assume $x \equiv y$ and $p \equiv \text{refl}_x$.

$$(\mathsf{refl}_x)^{-1} :\equiv \mathsf{sym}(A, x, x, \mathsf{refl}_x) :\equiv \mathsf{refl}_x$$

In analogy with induction on natural numbers, we have **completely** defined $(\cdot)^{-1}$.

Identity types - transitivity/concatenation

Transitivity is also a (binary) function.

$$\cdot: x = y \rightarrow y = z \rightarrow x = z$$

Double induction:

$$\operatorname{refl}_x \cdot \operatorname{refl}_x :\equiv \operatorname{refl}_x$$

Single induction:

$$p\cdot \mathsf{refl}_x :\equiv p$$

$$\mathsf{refl}_x \cdot q :\equiv q$$

Identity types - Non-trivial paths

Is this the case?

$$\prod_{A:\mathcal{U}} \prod_{x,y:A} \prod_{p:x=y} p = \mathsf{refl}_x$$

Identity types - Non-trivial paths

Is this the case?

$$\prod_{A:\mathcal{U}} \prod_{x,y:A} \prod_{p:x=y} p = \mathsf{refl}_x$$

Not well-typed!

Identity types - Non-trivial paths

Is this the case?

$$\prod_{A:\mathcal{U}} \prod_{x,y:A} \prod_{p:x=y} p = \mathsf{refl}_x$$

Not well-typed! Is this the case?

$$\prod_{A:\mathcal{U}} \prod_{x:A} \prod_{p:x=x} p = \mathsf{refl}_x$$

Identity types - Non-trivial paths

Is this the case?

$$\prod_{A:\mathcal{U}} \prod_{x,y:A} \prod_{p:x=y} p = \mathsf{refl}_x$$

Not well-typed! Is this the case?

$$\prod_{A:\mathcal{U}} \prod_{x:A} \prod_{p:x=x} p = \mathsf{refl}_x$$

Not a **binary** relation!

Paths and homotopies, ∞ -groupoids

$$p: x =_A y$$

$$q: x =_A y$$

$$\alpha: p =_{x=y} q$$

Higher inductive types

 $\mathsf{base}:\mathbb{S}^1$

 $\mathsf{loop} : \mathsf{base} =_{\mathbb{S}^1} \mathsf{base}$

Univalence axiom

(Formal) equivalence (i.e. isomorphism) is equivalent to identity

$$\mathsf{ua}: \prod_{A,B:\mathcal{U}} (A \cong B) \cong (A =_{\mathcal{U}} B)$$

Thank you!

Licensed under the CC BY-SA 4.0 license creativecommons.org/licenses/by-sa/4.0